Coverage for mlair/run_script.py: 33%
7 statements
« prev ^ index » next coverage.py v6.4.2, created at 2022-12-02 15:24 +0000
« prev ^ index » next coverage.py v6.4.2, created at 2022-12-02 15:24 +0000
1__author__ = "Lukas Leufen"
2__date__ = '2020-06-29'
4from mlair.workflows import DefaultWorkflow
5import inspect
8def run(stations=None,
9 train_model=None, create_new_model=None,
10 window_history_size=None,
11 experiment_date="testrun",
12 variables=None, statistics_per_var=None,
13 start=None, end=None,
14 target_var=None, target_dim=None,
15 window_lead_time=None,
16 dimensions=None,
17 interpolation_method=None, interpolation_dim=None, interpolation_limit=None,
18 train_start=None, train_end=None, val_start=None, val_end=None, test_start=None, test_end=None,
19 use_all_stations_on_all_data_sets=None, fraction_of_train=None,
20 experiment_path=None, plot_path=None, forecast_path=None, bootstrap_path=None, overwrite_local_data=None,
21 sampling=None,
22 permute_data_on_training=None, extreme_values=None, extremes_on_right_tail_only=None,
23 transformation=None,
24 train_min_length=None, val_min_length=None, test_min_length=None,
25 evaluate_bootstraps=None, number_of_bootstraps=None, create_new_bootstraps=None,
26 plot_list=None,
27 model=None,
28 batch_size=None,
29 epochs=None,
30 data_handler=None,
31 **kwargs):
33 params = inspect.getfullargspec(DefaultWorkflow).args
34 kwargs_default = {k: v for k, v in locals().items() if k in params and v is not None}
36 workflow = DefaultWorkflow(**kwargs_default, **kwargs)
37 workflow.run()
40if __name__ == "__main__":
41 from mlair.model_modules.model_class import MyBranchedModel
42 run(statistics_per_var={'o3': 'dma8eu', "temp": "maximum"}, train_model=True,
43 create_new_model=True, model=MyBranchedModel, station_type="background")