Coverage for mlair/model_modules/flatten.py: 100%

26 statements  

« prev     ^ index     » next       coverage.py v6.4.2, created at 2023-12-18 17:51 +0000

1__author__ = "Felix Kleinert, Lukas Leufen" 

2__date__ = '2019-12-02' 

3 

4from typing import Union, Callable 

5 

6import tensorflow.keras as keras 

7 

8 

9def get_activation(input_to_activate: keras.layers, activation: Union[Callable, str], **kwargs): 

10 """ 

11 Apply activation on a given input layer. 

12 

13 This helper function is able to handle advanced keras activations as well as strings for standard activations. 

14 

15 :param input_to_activate: keras layer to apply activation on 

16 :param activation: activation to apply on `input_to_activate'. Can be a standard keras strings or activation layers 

17 :param kwargs: keyword arguments used inside activation layer 

18 

19 :return: activation 

20 

21 .. code-block:: python 

22 

23 input_x = ... # your input data 

24 x_in = keras.layer(<without activation>)(input_x) 

25 

26 # get activation via string 

27 x_act_string = get_activation(x_in, 'relu') 

28 # or get activation via layer callable 

29 x_act_layer = get_activation(x_in, keras.layers.advanced_activations.ELU) 

30 

31 """ 

32 if isinstance(activation, str): 

33 name = kwargs.pop('name', None) 

34 kwargs['name'] = f'{name}_{activation}' 

35 act = keras.layers.Activation(activation, **kwargs)(input_to_activate) 

36 else: 

37 act = activation(**kwargs)(input_to_activate) 

38 return act 

39 

40 

41def flatten_tail(input_x: keras.layers, inner_neurons: int, activation: Union[Callable, str], 

42 output_neurons: int, output_activation: Union[Callable, str], 

43 reduction_filter: int = None, 

44 name: str = None, 

45 bound_weight: bool = False, 

46 dropout_rate: float = None, 

47 kernel_regularizer: keras.regularizers = None 

48 ): 

49 """ 

50 Flatten output of convolutional layers. 

51 

52 :param input_x: Multidimensional keras layer (ConvLayer) 

53 :param output_neurons: Number of neurons in the last layer (must fit the shape of labels) 

54 :param output_activation: final activation function 

55 :param name: Name of the flatten tail. 

56 :param bound_weight: Use `tanh' as inner activation if set to True, otherwise `activation' 

57 :param dropout_rate: Dropout rate to be applied between trainable layers 

58 :param activation: activation to after conv and dense layers 

59 :param reduction_filter: number of filters used for information compression on `input_x' before flatten() 

60 :param inner_neurons: Number of neurons in inner dense layer 

61 :param kernel_regularizer: regularizer to apply on conv and dense layers 

62 

63 :return: flatten branch with size n=output_neurons 

64 

65 .. code-block:: python 

66 

67 input_x = ... # your input data 

68 conv_out = Conv2D(*args)(input_x) # your convolution stack 

69 out = flatten_tail(conv_out, inner_neurons=64, activation=keras.layers.advanced_activations.ELU, 

70 output_neurons=4 

71 output_activation='linear', reduction_filter=64, 

72 name='Main', bound_weight=False, dropout_rate=.3, 

73 kernel_regularizer=keras.regularizers.l2() 

74 ) 

75 model = keras.Model(inputs=input_x, outputs=[out]) 

76 

77 """ 

78 # compression layer 

79 if reduction_filter is None: 

80 x_in = input_x 

81 else: 

82 x_in = keras.layers.Conv2D(reduction_filter, (1, 1), name=f'{name}_Conv_1x1', 

83 kernel_regularizer=kernel_regularizer)(input_x) 

84 x_in = get_activation(x_in, activation, name=f'{name}_conv_act') 

85 

86 x_in = keras.layers.Flatten(name='{}'.format(name))(x_in) 

87 

88 if dropout_rate is not None: 

89 x_in = keras.layers.Dropout(dropout_rate, name=f'{name}_Dropout_1')(x_in) 

90 x_in = keras.layers.Dense(inner_neurons, kernel_regularizer=kernel_regularizer, 

91 name=f'{name}_inner_Dense')(x_in) 

92 if bound_weight: 

93 x_in = keras.layers.Activation('tanh')(x_in) 

94 else: 

95 x_in = get_activation(x_in, activation, name=f'{name}_act') 

96 

97 if dropout_rate is not None: 

98 x_in = keras.layers.Dropout(dropout_rate, name='{}_Dropout_2'.format(name))(x_in) 

99 out = keras.layers.Dense(output_neurons, kernel_regularizer=kernel_regularizer, 

100 name=f'{name}_out_Dense')(x_in) 

101 out = get_activation(out, output_activation, name=f'{name}_final_act') 

102 return out